Статьи » Разработки |
2024-07-30 в 00:51 (последнее изменение 2024-07-30 в 00:51)
Отсутствие информации об коэффициенте преломления может затруднить сравнение или замену материалов в оптических системах. При выборе материала для конкретного приложения исследователи и инженеры часто ориентируются на оптические характеристики, включая показатель преломления. Если эта информация недоступна, то выбор может быть затруднен и привести к неэффективному использованию ресурсов. Принцип работыКогда падающий на границу раздела двух сред свет падает под углом Брюстера, он полностью поляризуется в плоскости, перпендикулярной плоскости падения. При этом отраженный свет становится полностью поляризованным параллельно границе раздела сред. Разрабатываемая установка определения показателя преломления ориентирована на материалы с диэлектриктрическими свойствами, поэтому упрощенная определительная формула выглядит так: Можно вывести показатель прелолмения среды преломленного луча. Эта среда и является исследуемым материалом Для определения угла Брюстера, я использую сервопривод, к которому прикреплен светодиод. На светодиоде установлен поляризатор, расположенный таким образом, чтобы гасить S-поляризацию. Свет, прошедший через поляризатор, будет отражаться от поверхности, которую мы изучаем, и попадать на светочувствительный элемент. Таким образом, при достижении угла Брюстера мы наблюдаем провал в интенсивности света. Учитывая, что устройство будет использовано только в воздухе, то мы можем абсолютную коэффициент преломления среды принять за единицу. И тогда Формула принимает следующий вид: Получаемые значения и обработка данныхСервопривод пробегает световым пучком по исследуемой поверхности несколько раз, для усредеднения получаемых данных и исключения погрешностей. На выходе получается массив значений интенсивности света (значений АЦП) при каждом градусе угла. Число повторов может быть произвольным, оптимальный вариант был выбран в 5 обходов. Усредненный график интенесивности света от угла выглядит так:Эксперимент был проведён в домашних условиях, где сложно достичь полной темноты окружающей среды. Поэтому помимо сигнала со светодиода на чувствительный элемент могло попадать излучение из окружающей среды, чем обусловлены скачки в измеряемой зависимости.Они выделены краснымРедкие импульсы можно убрать программно. Например, с помощью медианного фильтра.Медианный фильтр - это метод обработки графиков, использующий медиану значений соседних точек для определения нового значения точки. Принцип работы медианного фильтра при обработке графиков следующий:
В методе линейной интерполяции значения между двумя известными точками вычисляются с помощью прямой линии, которая соединяет эти точки. Кубическая интерполяция использует полиномы третьей степени для приближения функции, что дает более гладкие и точные результаты. Как раз последняя интерполяция используется в обработке получаемого графика. Для более точного определения провала, область интерполяции была взята от 45 до 68 градусов. Это связано с тем, что этому диапазону соответствует большинство исследуемых веществ. Приняв внешнюю среду за воздух, и взяв тангенсы от границ диапазона, можно получить диапазон измерений коэфф. преломления: Применив интерполяцию, мы получаем график, на котором отчетливо виден провал, обозначенный красным цветом: Микроконнтролеру программно задан следующий алгоритм: поиск минимума, которому соответствует конкретное значение угла, который и является углом Брюстера, далее он подставляет это значение в заданную ему формулу 4 и выдаёт значение коэффициента преломления вещества. В конкретном примере, так как исследуемым объектом была вода, угол Брюстера для нее равен 53°, это видно из эксперимента с небольшой погрешностью. Таким образом полученное значение показателя преломления исследуемого вещества равно Что сходится с табличными значениями показателя преломления воды. Так же была измерена коэффициент преломления и у других материалов. Например, у стекла: Посчитаем оптическую плотность стекла: Печатная плата Печатная плата – это основа электронного устройства, на которой устанавливаются и соединяются различные компоненты, такие как микросхемы, резисторы, конденсаторы и другие электронные элементы. Она является неотъемлемой частью всех современных электронных устройств. Основная функция печатной платы – обеспечить соединение и электрическую связь между компонентами электронного устройства. Она позволяет передавать сигналы, данные и питание между компонентами, обеспечивая работу устройства. Печатная плата обычно состоит из трех основных слоев: металлической фольги, основного материала и вновь металлической фольги. Основной материал, из которого изготавливают печатные платы, чаще всего представляет собой стеклоэпоксидную фиберглассовую текстолитовую пластину. Он имеет хорошие диэлектрические свойства, механическую прочность и устойчивость к высоким температурам. Металлическая фольга, обычно медная, наносится на основной материал с одной или двух сторон. Медная фольга играет роль проводника, по которому протекают электрические сигналы и питание. Чтобы создать электрические соединения, провода на плате, медная фольга подвергается гравированию в некоторых местах, чтобы создать требуемую проводимость и изоляцию. Мною была выполнена разводка гравирования печатной платы. В программном виде можно увидеть ниже Плата выполнена в виде круга, чтобы соответствовать измерительной части корпуса, в которой и будет находиться все основные компоненты, кроме компонентов управления Корпус был создан в программе Blender и представляет из себя измерительную часть, где поддерживается максимальная темнота для большей точности измерений, а также часть управления. Между ними есть рукоять для удобной транспортировки и использования устройства. На этой части можно выделить 3 отверстия. Самое большое, прямоугольное, под экран, на который будет выводиться измеренная коэффициент преломления. Остальные два отверстия сделаны под кнопки SAVE и RESET. В дальнейшем корпус будет напечатан на 3D принтере с толщиной пластика в 3 мм., что является хорошим показателем для прочности устройства. Предполагаемый пластик печати: ABS
Программа Программа для микроконтроллеров – это набор инструкций, которые определяют функциональность и поведение микроконтроллера. Она может быть написана на специальных языках программирования, таких как C, C++ или ассемблер. Важность программы для микроконтроллера весьма высока. Она является ключевым элементом, определяющим, как микроконтроллер будет выполнять свои задачи. Без программы микроконтроллер становится бесполезным устройством, неспособным обрабатывать информацию и выполнять требуемые действия. Программа для микроконтроллера также определяет основные функции и алгоритмы, необходимые для работы устройства. Например, она определяет, как читать и записывать данные в определенные порты ввода-вывода, как обрабатывать сигналы, взаимодействовать с другими устройствами и выполнять различные вычисления. Важность правильной и эффективной программы состоит в том, что она позволяет максимально использовать возможности микроконтроллера, снижает потребление энергии и ресурсов, улучшает производительность и надежность устройства. Программа – это в первую очередь алгоритм. Алгоритм представлен ниже В свою очередь блок «Измерить коэфф. преломления» так же состоит из своих процедур, которые представлены ниже Программа для Микроконтроллеров ATmega328P пишется на языке программирования C++, так как таким образом программа получается компактной как для человека, так и для Микроконтроллера.
Не пропустите обновления! Подписывайтесь на нашу группу Вконтакте. Так же у нас есть Telegram канал. Вам понравился наш материал? Поделитесь с коллегами! Просмотров: 1656. Оценка статьи: 0.0 из 5. Уже оценило 0 читателей |
Всего комментариев: 0 | |